小寒:雁归年将至,雪伴寒梅香******
【节气里的韵味中国】
作者:郝泽华
伴着蜡梅的孤雅幽香,在大雁北归的振翅声中,小寒节气准时赴约。
小寒是表示气温冷暖变化的节气。《月令七十二候集解》中记载:“小寒,十二月节。月初寒尚小,故云。月半则大矣。”冷气积久而寒,小寒意味天气寒冷,但未到极点,标志着季冬时节的正式开始。冬至之后,冷空气频繁南下,气温持续降低,温度在一年的小寒、大寒之际降到最低,从民谚“小寒时处二三九,天寒地冻冷到抖”中,便可感受小寒之寒冷。
1月1日,在浙江省诸暨市三都小学,水珠上映着开放的水仙花。新华社发
“小寒胜大寒,常见不稀罕。”虽名曰“小寒”,但在我国北方地区,小寒节气通常比大寒节气更冷。而对于南方大部分地区来说,则是大寒节气更冷一筹。此时,北方大部分地区都处于农业的冬歇期,人们需在家做好菜窖、畜舍保暖、造肥积肥。南方地区则要注意给小麦、油菜等作物追施冬肥,做好防寒防冻等工作。有经验的农人,会以小寒的气候推测来年的气候情况,民间流传着“小寒寒,惊蛰暖”“小寒不寒,清明泥潭”等俗语。
冬日,万物静默敛藏,但这方寂静中,也蕴藏着向阳的生机与萌动。“禽鸟得气之先”,时令流转中细微的变化,被禽鸟敏锐地感知着。古人将小寒分为三候:“初候雁北乡;二候鹊始巢;三候雉始雊。”小寒时节,阳气已动,大雁开始向北迁移。北方的喜鹊体察到阳气,开始为来年修筑巢穴。雉鸟也因感知阳气的生长,开始雌雄合鸣。唐代诗人元稹在《咏廿四气诗·小寒十二月节》中写道:“小寒连大吕,欢鹊垒新巢。”此时,宜聆听林间的啁啾鸟鸣与枝头的振翅之声,感受寒冬中向阳而生的生命之力。霜雪终将融化,严寒之后,春日必将到来。
风至而花有信。二十四番花信风中,小寒“一候梅花,二候山茶,三候水仙”。梅之凛然、山茶之艳丽、水仙之清雅,为小寒时节的苍茫大地,增添了几缕幽芳,也为无数寒冬拼搏的人们,带来精神的慰藉。
1月1日,在湖北省宜昌市秭归县茅坪镇,火棘果与白雪相映成趣。新华社发
“闻道梅花坼晓风,雪堆遍满四山中。”小寒时节,天地萧索,寒意凛冽刺骨,但梅花依旧凌风傲雪绽放。此时蜡梅已开,红梅待放,宜携三五好友踏雪而行,探梅寻香。梅花位列二十四番花信之首,自古广为文人吟咏。在《游前山》中,陆游写道:“屐声惊雉起,风信报梅开。”诗人的木屐声惊起山林中的雉鸟。而簌簌的花信风,送来了山中梅花绽放的消息。柳宗元则在《早梅》一诗中,以“早梅发高树,迥映楚天碧。朔吹飘夜香,繁霜滋晓白”的诗句,书写早梅凌寒绽放之仪态与芬芳。自梅花始,生命中的一次次绽放,都将次第而来。
漫长悠远的岁时轮转间,人们因地制宜地以饮食之道,表达着对山海的眷恋和对自然的敬畏。南京人逢小寒喜吃菜饭。菜饭的样式颇多,其中一种是将矮脚黄青菜同咸肉片、香肠片或是板鸭丁与糯米同煮,里面还会剁些生姜粒。这样煮出的菜饭,味道鲜香可口。热气腾腾吃下一碗,周身便暖了起来。在广东,则会在小寒的清晨吃糯米饭。当地人认为食用糯米可快速补充能量,有利于驱寒。传统的腊味糯米饭食材除糯米、腊肉、腊肠和花生外,还可添加香菇、虾米、叉烧等。“小寒吃羊肉,大寒吃萝卜。”羊肉同样是小寒节气中常吃的食物。若是将羊肉与当归、山药、胡萝卜同煮,不仅可以增添暖意,还不易上火。围坐在燃着炭火的铜锅旁,一起热腾腾地涮羊肉,也是不错的选择。时光、故土、记忆、信念……种种与饮食的羁绊,为人们口中的食物,添上了更为深沉厚重的滋味。
1月2日,在山东枣庄东湖公园拍摄的干枯植物。新华社发
“煮茶烧栗兴,早晚复围炉。”在寒冷的冬日,与三五亲友围炉煮茶,亦是一件快事。最近,这一古人雅事,成了城市中一些年轻人的新风尚。在院中搭起温暖的炉子,煮上一壶热茶,再烤上花生、板栗、橘子等吃食,便可欢聚畅谈。茶烟袅袅,暖意盈怀,传统文化正悄然被当代年轻人赋予新的内涵。
数九寒天,《九九消寒图》又添上几笔,不知不觉中,年关将近,各种年事活动正逐步展开。年味儿浓起来了:剪窗花、挂灯笼、买年画、写春联、备年货……而身在异乡辛苦打拼的人们,也准备收拾行囊,踏上归程。小寒节气在家人团聚的期盼中,增添了几分暖意。万家灯火中,总有一盏灯,在等待风雪夜归人。
大雁北归,寒梅着花,年节将至。小寒于寒冷中蕴藏着临近春日的生机,于银装素裹中孕育着生命绽放的力量。生活的美学与生命的智慧在节气更迭间不断延续,纵天寒地冻、冰封千里,若心怀信念,便无惧萧索与孤寒。
《光明日报》( 2023年01月05日 08版)
把科技穿在身上,既有温度也有风度******
仿造鹅绒、碳纳米管加热膜、人体红外反射材料……
把科技穿在身上,既有温度也有风度
在刚刚过去的春节假期,受寒潮天气影响,全国部分地区气温大幅下降,处于“速冻”模式中。
来自中央气象台的信息,节日期间,我国东北、华北部分地区,气温创今冬新低,黑龙江省漠河市最低温度甚至跌至零下53摄氏度。
为了防寒,连不少“要风度、不要温度”的年轻人,都穿上了厚实的外套。
不过,想御寒保暖,不必非要把自己裹成“粽子”。如今,用在冬衣上的“黑科技”能够帮助人们“既有风度、也有温度”。
“人体热量的散失是由于热传递造成的,热传递有3种基本方式:传导、对流和辐射。”天津工业大学纺织科学与工程学院高级工程师、博士生导师夏兆鹏在接受科技日报记者采访时介绍道,为了达到保温效果,在设计上冬季防寒衣物要尽一切可能减少热量经由这3种途径流失,冬季保暖材料及保暖服装也都是围绕着这一原理进行研发和设计的。
仿造鹅绒:
即使被浸湿也能实现保暖效果
“冬天人体与外部低温环境间存在巨大温差,这就造成热传导,即热量会从温度高的地方传导到温度低的地方。如果在衣服中加入低导热系数的高蓬松保暖填充物,就可以阻止热传导,进而减少人体热量散失,达到保暖的目的。”夏兆鹏介绍道,这类保暖填充物主要起阻隔热传导的作用,目前比较常见的天然材料有棉、毛、羽绒等,比较常见的化学纤维材料有中空涤纶、喷胶棉等。
与传统保暖填充材料相比,近年来出现了一些新型保暖填充材料,其中具有代表性的就是仿鹅绒结构高保暖絮片。这种填充材料不仅保暖性强、轻便,而且在潮湿的环境下依旧可以持续保暖。在2022年北京冬季奥运会上,中国运动员的防寒服中就用这种仿鹅绒结构高保暖絮片作为填充材料,其在完全浸湿的条件下仍然能够达到98%的保暖率。
“仿鹅绒结构高保暖絮片的主要成分是与鹅绒纤维直径长度相差不大的仿造鹅绒,同时混入远红外涤纶和热熔涤纶。”夏兆鹏解释,其中仿造鹅绒以中空涤纶和Y形涤纶为主体,这两种涤纶可以最大限度地储存静止空气,而静止空气可以较好地保存热量。此外,即使是在被水浸湿的情况下,中空涤纶和Y形涤纶依然可以储存一定的静止空气。
仿鹅绒结构高保暖絮片能够克服天然鹅绒显臃肿、有异味、易跑绒和价格高等缺点,同时具有超轻、超薄、湿态保暖、高蓬松度等特点,而且洗涤后回弹性好、不缩水、保暖率不降低。
碳纳米管加热膜:
通电即发热,温度可调控
采用加热材料制作的电热服是国内外研究最多的冬季服装之一。
“常见的加热材料有镍铬加热丝、复合加热丝、碳纤维加热丝、碳纳米管加热膜等,这些材料被内置于衣服中制成电热服,当电热服连上充电设备后,电流经过衣服内部的加热材料就会产生热量,仿佛把电热毯披在身上。”夏兆鹏介绍,除此之外,该类衣服还内置了传感器,通过蓝牙即可实现对衣服的智能控温,用户只需要下载一个App,就可以用手机随时调整衣服的温度。
其中,碳纳米管加热膜作为控温加热系统中的重要元件,具有非常好的应用前景。“碳纳米管加热膜可以反复水洗,耐弯折次数达到10万次以上,而且薄膜厚度约为几十微米,具有非常好的柔性,发热效率大于65%。”夏兆鹏补充道。
除此之外,价格相对便宜的金属丝线性加热元件,如镍铬加热丝、复合加热丝等,也是加热“能手”。
“金属丝类材料具有高导电性、良好的电加热性能,且具有传感、电磁屏蔽等性能。以复合加热丝为例,其是在金属丝中添加了钼,既减少了金属的氧化,同时还可以提高金属电加热元件的耐用性。”夏兆鹏介绍道,将含有钼的金属丝,通过冷拉伸工艺变成微米级金属微丝,使其由金属丝转变为纤维。该纤维可以与聚酯纱线混纺制备成纱线,用其制作出的织物具有导电性。
相较普通导电织物,这种导电织物的柔性及舒适性都有所提升。“其柔性及形态与传统纤维及纱线十分接近,舒适性也得到提升。”夏兆鹏表示,不过,这类制衣材料仍然存在不耐长时间水洗、比较重等缺点。
人体红外反射材料:
人体热辐射反射率可达60%
红外热辐射是人体热量损失的另一种形式,传统纺织品的红外辐射率高、热量损失快,有研究指出棉花不可避免地会以中红外形式辐射出人体50%以上的热量。而人体红外反射材料则可以通过将人体发出的红外波反射回人体的方式减少红外热辐射损失,以达到保暖的效果。
“人体红外反射材料多数由金属颗粒构成,这些颗粒以一种微结构形式存在,将此材料附在织物上,便形成了红外波反射层。该反射层可以把人体辐射的大部分红外波都反射回来,从而达到保温效果。”夏兆鹏补充道。
“人体红外反射材料通常被用来制作冬装外衣的内衬,一般其人体热辐射反射率可以达到60%,提高服装防寒保暖效果比较明显。”夏兆鹏表示,不过,如果长时间处在超低温环境下,由于人体辐射的热量有限,因此该材料或无法达到理想的保暖效果。
聚四氟乙烯微孔膜:
低温环境下既透气又防水
冬季户外可能会出现下雨、降雪、霜冻等天气,通过高密防水层阻挡雨、雪、霜的侵入,可避免因衣物内层保暖材料被浸湿而导致保暖系数降低、保暖效率下降甚至失效。
“防水材料是在高密织物外面附上一层聚四氟乙烯微孔膜、水性聚氨酯膜或者聚氨酯膜。”夏兆鹏解释道,聚四氟乙烯微孔膜每平方厘米有十多亿个孔,在低温环境下,这些孔洞的开孔率可以达到80%。该孔的直径比水蒸气分子的直径大700倍,因此人体产生的汗蒸汽可以从中通过,从而保持衣服的透气性。聚四氟乙烯微孔膜上孔的直径比一般水的直径小很多倍,因此外面的液态水无法通过,从而达到了防水的目的。(科技日报 记者 陈 曦)
(文图:赵筱尘 巫邓炎)